

Methods to Improve Oxidative Stability of Biodiesel

INTRODUCTION

Oxidative stability is one of the most important technical deficiencies of biodiesel versus petrodiesel. Autoxidation of biodiesel primarily occurs at allylic methylene positions found along the hydrocarbon backbone of fatty acid methyl esters:

	==	==	=		
Allvlic p	ositior	ns in m	nethvl I	inolena	te

The more methylene positions a fatty ester contains, the more susceptible it is to oxidative degradation:

	EN 14112
FAME	IP, 110 °C, h
18:0	>40
18:1 c9	2.5
18:2 c9, 12	1.0
18:3 c 9, 12, 15	0.2

From: *J Am Oil Chem Soc* 2009, 86, 699-706

Methods to improve oxidative stability of biodiesel include:

- **1.** Chemical reduction of double bond content • Catalytic partial hydrogenation, e.g.
- 2. Physical reduction of double bond content • More stable triglyceride feedstocks, e.g.
- 3. Blending
 - More stable triglyceride feedstocks
- Petrodiesel
- 4. Antioxidants

The goals of the current study were to explore the impact of each of these methods on oxidative stability of biodiesel.

	SIANDARDS				
Biodiesel	Units	ASTM D6751	EN 14214		
Acid value	mg KOH/g	0.50 max	0.50 max		
Free glycerol	mass %	0.020 max	0.020 max		
Total glycerol	mass %	0.240 max	0.250 max		
KV, 40 °C	mm²/s	1.9-6.0	3.5-5.0		
СР	°C	Report	-		
CFPP	°C	-	Variable		
PP	°C	-	-		
Cetane number	-	47 min	51 min		
IV	g l ₂ /100 g	-	120 max		
IP, 110 °C	h	3.0 min	6.0 min		

Petrodiesel & Blends	Units	ASTM D975	ASTM D7467	EN 590
Biodiesel	Volume %	0-5	6-20	0-7
Acid value	mg KOH/g	-	0.30 max	-
Sulfur	ppm	15 max	15 max	10 max
Lubricity, 60 °C	μm	520 max	520 max	460 max
KV, 40 °C	mm²/s	1.9-4.1	1.9-4.1	2.0-4.5
СР	°C	Guidance	Guidance	-
CFPP	°C	Guidance	Guidance	-
PP	°C	-	-	-
Cetane number	-	40 min	40 min	51 min
IP, 110 °C	h	_	6.0 min	20 min

Soybean oil methyl esters (SME) fail the oxidative stability and iodine value (IV) specifications of EN 14214 due to the presence of a significant percentage of polyunsaturated fatty acids (**PUFA**; 59.8%):

Catalytic partial hydrogenation was therefore explored as a chemical means to reduce double bond content and improve the stability of SME. Soybean oil (SBO) with an IV of 124 was hydrogenated to afford partially hydrogenated SBO (**PHSBO**) with a lower IV (116). Both oils were then used to prepare SME and PHSME.

Although the oxidative stability of PHSME (6.2 h) was superior to that of SME (2.3 h), the cold flow properties of PHSME were negatively affected. Introduction of trans- constituents (7.7%) upon partial hydrogenation was postulated as the reason for the change in low temperature properties, along with a reduction in polyunsaturated content.

In summary, PHSME:

- Meets EN 14214 oxidative stability requirement (IP > 6 h) EN 15751: for biodiesel blends in petrodiesel. The • SME was below the minimum limit
- Below EN 14214 IV limit (≤ 120) • SME was above maximum limit
- Inferior CP & PP in comparison to SME
- Kinematic viscosity within limits, but higher than SME

Bio-Oils Research Unit, National Center for Agricultural Utilization Research Agricultural Research Service, USDA, 1815 N University St, Peoria IL USA 61604 Bryan.Moser@ars.usda.gov. Tel 1.309.681.6511. Fax 1.309.681.6524.

Method 1: Chemical Reduction

Area %	SME	PHSME
16:0	10.6	10.3
18:0	5.3	5.1
18:1 c9	23.3	31.7
18:1 t9	0	5.9
18:2 c9, 12	52.6	40.2
18:2 t9, 12	0	1.8
18:3 c9, 12, 15	7.2	3.5
Others	1.0	1.5
Total trans-FA	0	7.7
Total PUFA	59.8	44.7

	SME	1:1	PHSME
;	0	2	3
	-2	-1	0
°C, mm²/s	4.12	4.60	4.93
) °C, h	2.3	4.3	6.2

Demonstrated that chemical modification can improve oxidative stability, but other properties are affected

Source: Eur J Lipid Sci Technol 2007, 109, 17-24 For emissions, see: Fuel Process Technol 2009, 90, 1122-1128

Biodi comp which stabil which stable unble	Method 2: Phy esel fuels prepared for osition strongly influe oxidative stability ca ity will result in a bler is saturated (or aror to oxidation than bit ended biodiesel.	rom different fe ences fuel prop an be improve nd with enhand matic) and doe odiesel. There	eedstocks have perties. There d. Furthermon ced resistanc es not contain fore, biodiese	ve different f efore, selecti re, blending e to oxidatio susceptible el-petrodiese	Fatty acid compo on of feedstocks less stable biodi n versus the less allylic methylen el blends display	ethod 3: 1 sitions. Of co s with few PU esel fuels with s stable fuel. e positions, is enhanced st	Blending Purse, fatty act FAs is one m th those of hig Lastly, petrop s considerably ability versus	id ethod by gher diesel, y more	Method 4: Antio Synthetic antioxidants such as Te others are known to positively im of biodiesel. Natural antioxidants tocopherols, also improve oxidati generally to a lesser extent.	SHQ, BHT, BHA and pact oxidative stability such as the ve stability but
Area %	Sovbean	Sunflower	Canola	Palm	Meadowfoam	Coriander	Camelina	Cottonseed	variety of foods, including grapes	, berries, fruits,
16:0	10.5	4.5	4.6	41.9	0.6	5.3	6.8	25.8	vegetables, herbs and other plan	ts. It possesses anti-
18:0	4.1	4.0	2.1	4.6	0.2	3.1	2.7	2.5	oxidant benavior, as demonstrate	ed by others previously
18:1 c6						68.5			in Sumower, paint, and canola of	15.
18:1 c9	22.5	82.0	64.3	41.2	1.0	7.6	18.6	16.4	Gossypol is a polyphenolic alde	hvde possessina
18:1 c11	1.6					1.0	1.1	0.8	antioxidant properties isolated fro	om cottonseed.
18:2 c9, 12	53.6	8.0	20.2	10.3	0.9	13.0	19.6	51.5	Because gossypol is toxic, it mus	t be removed from
18:3 c9, 12, 1	5 7.7	0.2	7.6	0.1			32.6	0.2	cottonseed oil and meal prior to t	heir uses as in food
20:0		0.3			0.8		1.5	0.3	applications or as animal feed.	
20:1 c5					64.2					ОН
20:1 c8					0.7					OH
20:1 c11							12.4			
22:0		1.0			0.2		0.2	0.2	HO HO OH	OH CH
22:1 c13					10.2		2.3		HO OH O	ОН
22:2 c5, 13					18.9					ÓН Ö
Others	0	0	1.2	1.9	2.3	1.5	2.2	2.3		
Total PUFA	61.3	8.2	27.8	10.4	19.8	13.0	54.3	51.7	Gossypol	Myricetin
IV, g I ₂ 100 g	134	85	110	54	87	89	151	105		
IP, 110 °C,	h 5.0	6.2	6.4	10.3	66.2	14.6	2.5	5.0	Both myricetin and gossypol were potential exogenous antioxidants	in SME after both 0

In summary, oxidative stability of biodiesel can be improved, when practical, by switching to a feedstock with less PUFA. For example, the IP of SME is 5.0 h. If feasible, switching to canola oil methyl esters improves IP to 6.4 h.

Meadowfoam oil methyl esters (MFME) have an exceptional IP of 66.2 h due to its unique fatty acid profile. The entire content of PUFAs in MFME does not contain bis-allylic methylene positions, making them less susceptible to oxidation than typical PUFAs.

Sources: *Energy & Fuels* 2008, 22, 4301-4306 *Energy Environ Sci* 2010, 3, 318-327 *Biomass Bioenergy* 2010, 34, 550-558 *Fuel* (in preparation)

EN 14112 versus EN 15751

Two oxidative stability test methods utilizing the Rancimat instrument have been developed by the European Committee for Standardization: EN 14112 and EN 15751. Both indirectly measure oxidation by monitoring the change in conductivity of deionized water as volatile oxidative degradation products are transported via air sparge from a vessel containing the sample.

EN 14112: for biodiesel (pictured below)

primary difference is that taller sample vessels are required which serve as reflux condensers for the more volatile petrodiesel component.

Bryan R. Moser

Biodiesel Blends

Soybean oil methyl esters blended with meadowfoam oil methyl esters:

Blend	IP	СР	PP	KV	
level	(h)	(°C)	(°C)	(mm²/s)	(g
0%	5.9	0.1	-2.0	4.05	
10%	5.8	-0.7	-2.7	4.26	
20%	6.3	-1.5	-4.0	4.42	
30%	7.4	-2.4	-5.3	4.60	
40%	8.3	-3.6	-9.0	4.82	
50%	9.3	-4.5	-11.7	4.99	
100%	66.2	-5.8	-10.7	6.15	

Petrodiesel Blends

Soybean oil methyl ester-petrodiesel blends:

Blend	IP	СР	PP	KV	Lu
level	(h)	(°C)	(°C)	(mm²/s)	
B0	> 24	-18	-23	2.30	
B2	> 24	-18	-22	2.31	
B5	> 24	-16	-22	2.37	
B10	> 24	-14	-21	2.41	
B20	17.1	-12	-17	2.54	

Camelina oil methyl ester-petodiesel blends:

			-		
Blend level	IP (h)	СР (°С)	PP (°C)	KV (mm²/s)	Lu
RU	< 21	_18	_73	2 30	
DU	> 24	-10	-20	2.30	
B2	> 24	-16	-23	2.33	
B5	> 24	-14	-23	2.38	
B10	16.6	-13	-22	2.42	
B20	8.9	-11	-20	2.58	

Sources: *Energy & Fuels* 2008, 22, 4301-4306 *Energy Environ Sci* 2010, 3, 318-327 *Bioresource Technol* 2010, 101, 646-653 Energy Environ Sci (in press) DOI: 10.1039/C1EE01047F Renewable Energy (submitted for publication)

and 90 days of storage utilizing the Rancimat method (EN 14112). Below is IP data (110 °C):

Myricetin	SME 0 days	SME 90 days
0 ppm	6.6	4.5
100 ppm	10.1	8.7
500 ppm	14.7	12.7
1000 ppm	15.4	13.1
Gossypol	SME 0 days	SME 90 days
0 ppm	E E	4.0
	5.5	4.9
250 ppm	5.5 7.2	4.9 6.6

$C_f = (IP w/additive at X d) / (IP w/o additive at X d)$

	C _f 0 days	C _f 90 days
Myricetin:		
100 ppm	1.6	1.8
500 ppm	2.2	2.6
1000 ppm	2.3	2.7
Gossypol:		
250 ppm	1.3	1.4
500 ppm	1.5	1.6

In summary:

- Both gossypol and myricetin exhibited antioxidant behavior in SME.
- Myricetin was more effective than gossypol, as indicated by higher comparison factor (C_f) values at similar concentration.

Sources: *Eur J Lipid Sci Technol* 2008, 110, 1167-1174 *Eur J Lipid Sci Technol* 2010, 112, 802-809

100 g)

132

128

119

bricity